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THE NON-AXISYMMETRIC PROBLEM OF THE STRESS 
CONCENTRATION IN AN UNBOUNDED ELASTIC MEDIUM 

NEAR A SPHERICAL SLIT? 
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Odessa 

(Received 24 June 1991) 

Using the approach described in [l], the non-axisymmetric problem of the stress concentration in an 

unbounded elastic medium near a spherical slit is reduced to three, one-dimensional, separately solvable, 

integral equations. Their exact solution is obtained in a class of functions with non-integrable singularities 

and is used, as in [l], to derive simple formulae for the stress intensity factors. The axisymmetric 

modification of this problem has been investigated in [2-51. 

1. MODIFICATION OF THE TREFFTZ REPRESENTATION 

WE ARE interested in the representation [6] 

u=J/+(r’-R’)gradJ/,, (1.1) 

Here v = 2Gu, u is the displacement vector, and $ is a harmonic vector with components ui(xl, 
x2, x3), cc(i(xl , x2, x3) (j = 1, 2, 3), respectively, and $0 is a harmonic function satisfying the 
equation 

aJ/o divJ/ 
r-+VJ/O=-- 

1-2/l v= - 
& 2K ' K 

(K-3-41-C r=dm+x;) (1.2) 

where p is Poisson’s ratio, and G is the shear modulus. 
If we have formula (1.1) for the components of the displacement vector in a Cartesian system of 

coordinates, well-known formulae can be used to express those components in a spherical system of 
coordinates and then, using the Cauchy relations and Hooke’s law, to find the stresses a,, rti, Tag. 
However, these formulae prove to be quite complicated. We will therefore obtain formulae of the 
same structure as (1. l), as in [l]. To do this, we obtain [7] a formula for the components pvj (j = 1, 
2,3) of the stress vector over the cross-section with normal Y. Using (1. l), the Cauchy relations and 
Hooke’s law, together with (1.2) and the equation divu = div$+2ra&/ar, this formula can be 
written in the form 

v,j=Hj(Xl, X2, XJ) + (r* - R2)r J!h(x*, x29 x3) 
Fhi+xj 

ah 
Hi=-2~i$~ +r2 - 

alLo 1 3 wi “bk 

hi 
+Xjr( I- 2p) ar + - z Xk(r - 

2 k=l k 
yp), i=l,2,3 (1.3) 

J 

It can be shown [7] that AHi = 0. 
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Having the formula for pvi , we find 

u,=p,i ~0s~ sin0 +pv2 sincpsine +pv3 cOse 

7fi =Pvl cosqcose +pv2 sincpcostl - pv3 sin8 

?r9 = -py1 sinql tpv2 cosv 

or, after obvious algebra 

ru,= Jl;(r, 8, cp) + (r’ - R’)r$t(r, e,q) 

r7fi = $f (r, 8, (p) + (r2 - R2)r [r -l $;(r, 8, cp)]’ 

mr9 = $;(r, 8, (p> + (r2 - l??)r[(rsine)-’ $b(r, 8, cp)]’ (1.4) 

9: =Hr coscpsine tH2 sin@n8 +H3 case 

$t =H1 cosqCos0 + Hz sinq- H3 sin0 

J/3 =-HI sin@ H,coslp (1.5) 

(the derivative with respect to r is denoted by the prime, the derivative with respect to 8 by the dot, 
and the derivative with respect to cp by the comma). Then, introducing the function 

J/: = HI cosq + H2 sin cp 

and the complex combination 

tit* =$; +iJI; 

it is easy to see that $7 satisfies the differential equation 

A$; -,[ $; - 2i(J/;)‘]re2 cosec2B = 0 (1.6) 

It can also be shown that the function $T (j = 1,2,3) can be expressed in terms of the solution of 
Eq. (1.6) by the formulae 

2$:= ($ +$ )he +H,cOse 

2$; =($; + &cc0se - H3 ke (1.7) 

2iJ/3 = $;- c(~Ha =o) 

and after this has been done the harmonic function I,!J~ can be found. 
Thus, we introduce vector functions H and +* with components HI, Hz, H3 and $?, I,@, ICI;, 

respectively. Using formula (1.3) for Hj, we calculate the derivatives of the components with 
respect to Xi. This gives 

-divH=2[r(r&)‘-2(1 -2p)r$& -2(1+&$~~] (1.8) 

On the other hand, using formula (1.5) for Hi, we establish the equation div H = div $*, and this, 
together with (1.8), gives an equation for finding &. 

2. STATEMENT OF THE PROBLEM AND CONSTRUCTION OF A DISCONTINUOUS 

SOLUTION 

We will assume that there is a spherical slit of radius R with centre at the origin of coordinates 
r = 0, 8 = 0, cp = 0 in an unbounded elastic medium with shear modulus G and Poisson’s ratio w. Let 
the slit occupy part of the sphere: OS f3S o, - rrQ (p S 72. The elastic medium is loaded arbitrarily 
and the stress distribution when there is no slit is known 

u,= -4r@, 0, cp), rfi = -42@ 8, cp), rr9 = -4& 0, rp) (2.1) 
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The problem consists of finding the stress distribution in the elastic medium when there is a slit in 
it and, in particular, in finding the stress intensity factors at the slit edges. 

We construct the required stress field in the form 

u,=a:-q,, rre =r; -42, 
* 

rrlp = 7?9 - 43 (2.2) 

where the stresses indicated by an asterisk are constructed by (1.4) and (1.5), and we allow for 
discontinuity of the displacement field on crossing the slit. To do so, we must construct 
discontinuous solutions of Eq. (1.6) and the harmonic equation AH3 = 0 with first-order discon- 
tinuities on the slit r = R with prescribed jumps of the required functions and their normal 
derivatives (normal to the line of discontinuities), i.e. 

w31, [&I, [J/i’ I, NT1 
(2.3) 

[fl = F(R - 0, 0, cp ) - F(R + O,e, ~1 

These discontinuous solutions are constructed by applying a Fourier transformation with respect 
to the polar angle to the given equations 

H3,,(r,e)= $ _;H,(r.e,&?-“Vd~, n=O,fl, +2 )._. 
* 

(2.4) 

and then a Legendre transformation with respect to 8 

H3,rk(r) = ; sin0 P~“)(cosT)H, (r eye n P 
0 

(2.5) 

and, finally, the Mellin integral transformation of the generalized model [8]. Inverting the resulting 
Mellin transforms and then the Legendre transform using the formula 

H,,(r, 0= Z 
k=ln I 

Hgnk(T)uk~nIPkln’(COSe) 

2ak, m =(k-m)! [(k+m)!]-‘(2k+ I) (2.6) 

we obtain the following formula for the Fourier transforms of the required discontinuous solutions 

~,(r, e)=P 1 .I- sin 7 K,* (r, R, 13, T) [Hi(R, T)J& - gR J sin rKi (r, R, 6, T)[H,(R, 7) ]d~ 

(2.7) 

and a similar expression for I&Y, (r, e), in which K,* is replaced by K,*+i , where 

Ki(r, R, e,q= ii 
k=lm ( 

Ok, ,m, @k(r, R)p~m’(c”Se)P~~‘(cOS~) 

W-9 

(2/c+ l)q,+(r, R)=rkRek, r < R; (2k + l)qk(r, R)=Rk+‘rwk-’ . r>R 

Here and below the integration with respect to 7 is taken from T = 0 to T = w. 
Clearly, in order to find the Fourier transforms of the required stresses a,* , ~2, $,, using (1.4) and 

(1.5), written in terms of Fourier transforms, we need to find the transforms of the discontinuities of 
the functions 4: and their derivatives. We obtain these discontinuities from the condition for zero 
stresses (2.2) on the sides of the slit r = R T 0, that is 

&=RTO=ql. & Ir=f?rg =9*. 7:&=RTO=43 

which can be written in transforms as 

c:,(RTO,e)=qi.(t% &(RTo,e)=h(e), 

&(R~o,e) =qsn(e), o<e<0, n=o,*l, +2 ,... 

It follows immediately from (1.4) that [$g(R, 0)] = 0 (j = 1, 2, 3) and thus, from (1.5) 

(2.9) 
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L~?z(R f-01 = 0, [rLkt(R, f-91= 0 

This simplifies (2.7) and the analogous formula for +G(r, 0) considerably 

(2.10) 

H,(r, 8)=R2.fsin7KL(I; R, 8, T)[HL(R, T)]~T 

$in (r, 0) = R2 / sin TK~+, (r, R, 8, T) [ $i’,’ (R, T)] d7 

(2.11) 

3. REDUCTION OF THE PROBLEM IN QUESTION TO AN INTEGRAL EQUATION 

From Sec. 2, it is clear that, in order to find Hs and I,!$, , and then $7 (i = 1, 2, 3) from (1.7), it is 
sufficient to find the jumps [H,‘(R, r)] and [t,G’(R, r)]. For th is, conditions (2.9) must be satisfied, 
and from (1.4) and (2.10) these reduce to the equations 

&CR - 0, 0) = 4in(e), O<B<o, j=l,2,3, n=0,*1,52 ,... (3.1) 

It is more convenient to consider positive and negative values of the parameter II separately: 12 = m, 
m>O and 12 = -m, m >O, and to use the following notation for the unknown discontinuities 

[J/i:: (R, 7)1,=, =x-k +, (0, [&CR, 7)ln= m= x;, (7) 

[JI;idK QJn= -,,, = xJ,,-I(T), [Hb(R, ~)l,,=_~ =$,,(T), m=O, 1,2 ,... 
(3.2) 

Then, using formulae (1.7) and (2.11) and the obvious linear combinations of the resulting 
equations, we obtain the equations 

z;+, =JsinTS,+i (e,7)~+,(7)d7=LT,(e)+iq9,,(OX m =o, 1,2,. . . 

I;_, =/ sinrS,_i (tl,T)xy,,_1(r)d7= U_,(e)+iq3,_m(e),~ m =O, 1,2,. . 
(3.3) 

Here 
Lr,(e)=sine4,,,(e)+coseq2,n(e > 

v,(e)=coseql,,(e)- sinW,,(Q 
(3.4) 

s,(e, 7) = i 
“k m 

d pkm (cos e)pkm (COST), 
k-m %+I 

m = 0, 1, 2, . . (3.5) 

From the second formula of (3.4), it is clear that the solutions of the third and fourth equations of 
(3.3) are related by the formula Gus = x:(r). Inverting the Fourier transforms (2.11), and using 
(3.2) and (3.8), we find 

H(R- O,e,q)=RiI$ +2Re i fhe’*9] 
m=l 

$;(R-O,e,cp)=R ,, Z+,+,e’@‘+‘t m C I,_ ,edim9 
m-1 

(3.6) 

In order to calculate the stress intensity factor, we need to know the stress distribution on the 
continuation of the spherical slit, that is, u,(R, 8, cp), T~(R, 8, cp), T~,(R, e, C+Y) for 0 0. From (1.4) 
for example, a,(R, 8, cp) = R-1$,*(R-0,8, q), and from (1.7) and (3.6) we have 

air, 8, PI = cOsel,O + Re hose x p9r;t 

m = 1 

tsine[ Z ei”‘91&+1 t C eim?IL+, t I: e-im9Tm-1 4, e>w (3.7) 
n, = 0 m= I *=I 
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Once the integral equations (3.3) have been solved, this formula can be used to calculate the 
normal stress intensity factor, and those equations can be solved merely by finding the solution of 
the equation 

lsin7S,(8,7)X,(7)d7=f,(e), OGB<w (3.8) 

4. SOLUTION OF THE INTEGRAL EQUATION OF THE PROBLEM IN THE CLASS OF 

INTEGRABLE FUNCTIONS 

We will attempt to sum the series (3.5), defining the kernel of the integral equation (3.8), by 
establishing a relation between the associated Legendre functions Pp(x) and Jacobi polynomials 
Pk*.p(x). Using formula 8.704 of [9], we have 

Pk” (x) = 
1 1 tx fim l-x 

r(1 -m) 
(-- 

I-X) 
F(-k, ktl; 1-m; - 

2 ) 
(4.1) 

Comparing this with 8.902(l) of [9] and putting x = cos 8, we obtain the relation 

p;m.m 
(c0se) = [r(k + 1 - m)/k!] tgm 41 e P? (c0se) (4.2) 

Then, putting a = -m, /3 = m, t = 1, x = case, y = COST in formula 5.14.4(l) of [lo], using (3.5) 
and (4.2), and then the well-known series representation of the Appel function F4 in order to 
eliminate the multiplier I’(1 - m), we obtain 

srn(e, 7)= 
w, sin *mse sin*ms7 x 

d2tpxe tgm 41 7 

X F,(Mtm, 1 +m; 1 tm, 1 tm; sin2%0sin2?4r, cOs2%8cOs2~rJ (4.3) 

In the reduction formula on p. 231 of [ll] we take (Y = %+m, p = %+m and x = - tg2?M$ 
y = -ctg2% when 8< Q- and x = -tg2 l/27, y = -ctg2iM when r< 8. The last factor in (4.2) can then 
be represented in the form 

F(?4 + .m, %A; 1 + m; tg2Mctg2?4r) 

(c0sseshxT)2m+1 ’ e<r 

When 8> r, the variables 8 and T in this expression must be interchanged. 
Consider the discontinuous Weber-Sonin integral 

0 
wm(tgse, tgng=l Jm(Stg~e)Jrn(Stg~7)ds= 

0 

= @)rntPHe 

m!tp+‘% 
F(m + ??i, %; m + 1; - tg’e), e-s 

tg%T 
(4.4) 

where we have used formula 6.574(l) of [9]. 
To obtain a representation of the integral when 8>r, we must use formula 6.574(3) of [9]. 

Comparing (4.4) with the previous formula, we obtain 

s,(e, 7)=~~c~esec457Wm(tg~e,tgf17), m=o, 1,2,. . . 

Taking this into account, integral equation (3.8), by means of the substitutions 

(4.5) 

tg’/re = r, tg%T=p, tg%w=a 

2( 1 + p*)-“’ xm (2 arctgp) = X, @) 

(1 +r2)-Mfm(2arctgr)=Fm(r) 
(4.6) 

can be converted into the integral equation 
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1 

/ wrn (x3 Y)YXm@YMY = -j Frn,@), OGx< 1, m = 0, 1, 2, . . . (4.7) 
0 

The last equation has an exact solution either in the form of quadratures or as a series in Jacobi 
polynomials IS]. For our present purpose, it is better to use a series solution, and this can be 
obtained by the method of orthogonal polynomials [8] in the form 

x:&v) = 22 krg xmk d& E+V - 2Y2) 

4(k)!(m + 95 + 2k) f F,&x)xm+‘P~* -"(l - 2.x2)& 
Xm&= 

aP(k+%) d %jr 

(4.8) 

Substituting the resulting solutions into (3.9), we find the intensity factor by passing to the limit 

(4.9) 

However, after calculations similar to those carried out previously in [S], we come to the 
conclusion that N1 (p) = 0 for any loading of the elastic medium. This shows that the solution (4.8) 
of (3.10) or (4.7) in the class of integrable functions does not enable the true stress distribution (3.7) 
to be found for 0 = w. Thus, as in [5], we need to widen the class of required solutions to include 
those with non-integrable singularities when 8 = w. 

5. CONSTRUCTION OF THE SOLUTION OF THE NON-INTEGRABLE EQUATION IN THE 
CLASS OF NON-INTEGRABLE FUNCTIONS AND CALCULATION OF THE STRESS 

INTENSITY FACTOR 

We shah construct a solution of the integral equation (4.7) in the form 

MQY)=%z(ay)+GJ Yrn 
(1 -y2)% 

(5.1) 

Using the same argument as in [S], we find the coefficients C, which, in this case, will have the 
form 

2 ’ Fm(Qx)xm+‘& 
c,dk!L =_ 

2mtl n! Jz-?- 
(5.2) 

The solution of (4.7), given by substituting (5.1) and (4.9) into (3.7) and then using the substitution 
(4.6), will give a correct stress distribution (3.7) for B>w, allowing for the fact that only the second 
term in (5.1) will give an infinite root of (3.7). To make the passage to the limit (4.9), we must use 
the relation 

I 
sin TS&?, 7) tg’n ?d? tg=- 1 5% tg-‘+5@ 

= 
2cos3 ?4rR3 (w, 7) cos?MR(B, w) ’ (5.3) 

8>U, I=O, 1,2, . . . . R(w, 7) = \/tg’%a - tg%? 

which follows from (4.3) of [S], taking into account the replacement of variables (4.6). AS a result of 
passing to the limit, we have 

0~ Ifm9 $, 

I’?,@)= -tg3~~~~cos~x~~ +Re [2coso ,z, 2m + 1 + 

00 ei(f--l)9 = ,-ffz+l)9 

tsinw( I; x;o+ x Xi0 IIt (5.4) 
IS 1 21+ 1 DO 2lt1 



Non-axisymmetric problem of stress concentration in an unbounded elastic medium 671 

By (5.2), (4.6), (3.3) and (3.4) we have 

XL= 
2m t 1 w V,(e)c”+‘(e)de 

-/ 
tg?4e 

ntg?4w 0 c0s+5eR(o, e) ’ 
c(e) = - 

tgso ’ 
m = 0, 1,2, . , . 

21+ 1 w 
x’o = - s 

u,- 1 (e) +i43,r- de) 

~4s 41 e R(U, e) 
P1(e)de t I= 1 2 3 

ntg?4w 0 
, , 9.e. 

21t 1 
Xi0 = 

w qr+l)(e) +iq3,-(I+l)(e) 
-- 
ntgjiw IJ c0s se fqo, e) 

cl+l (ejde, I= 0, 1, 2, . . . 

(5.5) 

We will transform the resulting formula (5.4) into a more convenient form. Substituting (5.5) into 
(5.4) and writing out the real part of the complex expression in (5.4) in the form of a sum of 
conjugates, we obtain 

tg% %W ,” 
N,(P)= - - 

iqe, cp)de 

lr O c0s34e zz(w, e) ’ 

m=- 

qe, cp) = c0s0qe) x erm9vm (e)c” (e) + 
m=_C.3 

t%sino ~z2(e)[uO(e)+ ii ei”wm(e)P1(e) + 
mn-oo 

(5.6) 

t i Pq v, (ep l(e) - u,(e) 1 
m=-03 

Using the theorem of a convolution. for a finite Fourier transform (see [S], p. 316, for instance) 
and formula 1.447(3) [9], taking account of (3.4) we have 

N,(d=- 
tTny 0 jt ; c(ew - c2(e)i[ cos 0 v(e, I))+ sin&J@, $>cos(~ - G)lded$ 

0 -l? c0sxezq4 e)c(e, cp- $1 
(5.7) 

where 

u(e, ti)=sineq,(e, J/)+ccseq,(e, $1 

v(e, ti)=coseq@, $I- sineq,(e,J/) 

c(e, Q) = i - 2c(e)c0sa + c2(e) 

(5.8) 

We also obtain formulae for the shear stress intensity factors 

(5.9) 

According to (1.4), the stresses on the continuation of the crack that are included here will be 
expressed as 

r,.e(R e,qI=R-‘J/;(R- 0, 0, (p) 

rre(-R e,cP)=R-’ Jl:(R- o,e,q), e>0 (5.10) 

The use of formulae (1.7) and (3.6) and calculations similar to those carried out to obtain (5.7) 
lead to the result 



672 G. YA. ~%POV 

cosoU(B, $)cos(cp - $) - sino V(t), $)jtf&fJl 

c0s41efqo, e) c(e, up - $1 

N,(V) =- 
* c(tq 1 - c2(qicos(9 - doth(4 wea tg:*:a 7 s (5.11) 

0 --n C0s34eR(o, e)c(e, up - $1 

6. SOME SPECIAL CASES OF THE LOADING OF AN ELASTIC MEDIUM 

We will start with the case of all-round extension of the elastic medium at infinity by a uniform load of 
intensity p. In this case 

4,@,d=-P. 4*@,d=O, s,@,d=O 

and therefore, according to (5.8) 

U(s, 9) = -p sin 0, V(e, 9) = -p case (6.1) 

Thus, in this case Ns (9) = 0, and for Nr (cp) = Nr , N2 (9) = N2 according to (5.7) and (5.11) and from 
formulae 3.613 of [9], we have the expressions 

1 
N, = ~ 

ntg%iw 
[ cosd(c.0) + 

2 sinwJ(w) 
I (6.2) 

tg % w 

1 2COSWJ(W) 
N, = ~ 

ntg%w 
I - sin wJ*(w)] 

tg%w 

where 

J(w) = $ 
tg’ %e sin%8 d8 

J*(w) = I 
tg%e me dtr 

NW, 0) ’ cos%eR(w, e) 

and, from the relation cos 0 = COS*%~ - sin* M0, the last integral reduces to 

J*(w) = I 
sin%ede 

- J(w) 
R(w, 0) 

(6.3) 

The integrals here can be reduced to standard tabulated form by the substitution 0 = 2arctgx. We then have 

J(W) = w - sinw, J*(w)=2sinw-w (6.4) 

and, therefore, instead of (6.2) we will have the expressions 

~[WCOSW + 2(w - sinw)] 
N, = 

ntg%w 

2 pcos%w 
N, =- 3 

IT tg ‘= %w 
(wcos%w - 2sin%w) 

The next case that we consider is that of axial extension at infinity in the direction Y by a uniform load of 
intensity p. We introduce the following notation for the direction cosines 

COS(V, X) = lp, cosW, y) = mg, cos(v, 2) = np (6.5) 

Using well-known formulae to transform the components of the stress tensor by rotating the coordinate axes, in 
this case, we have 

291(e. 9) = -plsin%e(l; cos’9 + m$sin’9 - nzp + ipmpsin2q) + 21pnpc0s2ec0s9 + 

+ 2mpnp(c0sae cas9 - hPeti9)p)l 

2q,(e,9)= -p[sin29(m$sine - l~cose)+lpmpsinecos29+nnpcose(mp - l,sin9)1 (6.6) 
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and, according to (5.8) 

l!J@, IJ?) = -p[M($ + m’p)sIne - ni sin@ cosztJ + ‘%(I~ - m@im3cos2~ * lpmpsinO sin2lp t 

t np(lp 00~0 t mp ~3’8) t npmp sin’8 case sin 91, 

v(e, +I) = -p[n; sitPecose t npsine(lp - mpcos’e)cos~+ n,m,sine cd% sine] (6.7) 

We now substitute these expressions into (5.7). Subsequent use of integrals 3.613 [9] yields a single 
quadrature for the intensity factor N1 (q), where the integrals have the same structure as in (6.3), and the same 
substitution gives functions tabulated in 191. Thus, we can obtain 

2irp-’ tg%wN, (VI = 2niJ, (W)COSW + sinwctg%w[2(1: + rn$ - n$)J(w) + 

+n$J,(w)] +npmpctg4L1w(2J(w)-J,(w)] cos~s~,lp+n~m~sinw[J,(w)t 

+ctg”%~J~(w)] (sinq -. cosipp)+ { 2npceswct&hw[2(Ip - mp)J(w)+ 

+mpJ, (~11 +n&,+mp)sinw[J*(w) + ctg5%wJ~(w)J1 cospt [J(W)+ ctglMwJ,(~)] x 

X sinwetgHw[(I$ - mi)cos2q+ 21pmpsin21p] 

The integrais J(u) and J*(w) are given by formulae (6.4), and for the others we have 

J~,(~)=~Sln~~Qfj~(~~d~=8tp~4i~[~0s~(~0~*M~+=~,sin’~w+cos”hwt’~ssin’Yiw)i 

t(siIP%w - coSWV/~ cosz?4w + ‘la sin5 SW) - ‘/s sin’ Yzw] 

Q:!+T, = &ST 00s~ sec’hrl-’ (w, T), k = 1,2,3,4 

J,*(w)=IQ~‘(7)d~=2tgMw(tg1~wcosw+tg5Hw- 2-%tg%w)-%ti(tg*%w- 5) 

J,(w) =!$f~ins~tgrQ(~) w (T)dr= 16tg’~w~in’44w(cos~lAwt~/~ cos’Hw + ‘/asin4%w - 

- cos*Y;w - “Is sin~lAw+‘/S) 

J,~w~=~~tg~Q~)~~~d~=2[~Hw(~Mw-2cos’Hwtwtg~w+’h+cos-‘~w-~w] 

JsT,(w)“f4Isin~sin2rQ~3,3)(,)d,=8tg34”rwfcosw(cos4Hwt ~~~in~Hwms’~w+‘/~sin~~~w)t 

+tg*Hw[M+%w - 2wsw)~‘/3~sz~w +‘I5 sin’%w) - 1f~(2cos~ - 1)Jj t 

+ *yr, tgS%w- ‘J,tg’Hwslti’%w+ tgHwshi’?4w-%w 

(6.8) 

Thus, for the given loading, the normal stress intensity factor can be expressed in terms of elementary 
functions. This is also true of the shear stress intensity factor (5.9). For, substituting (6.7) into (S.ll), the 
formulae obtained for them are similar to (6.8). 
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