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THE NON-AXISYMMETRIC PROBLEM OF THE STRESS
CONCENTRATION IN AN UNBOUNDED ELASTIC MEDIUM
NEAR A SPHERICAL SLITY

G. Ya. Porov
Odessa

(Received 24 June 1991)

Using the approach described in [1], the non-axisymmetric problem of the stress concentration in an
unbounded elastic medium near a spherical slit is reduced to three, one-dimensional, separately solvable,
integral equations. Their exact solution is obtained in a class of functions with non-integrable singularities
and is used, as in [1], to derive simple formulae for the stress intensity factors. The axisymmetric
modification of this problem has been investigated in [2-5].

1. MODIFICATION OF THE TREFFTZ REPRESENTATION

WE ARE interested in the representation [6]
v=y +(r? — R®)grad Y 1.y

Here v = 2Gu, u is the displacement vector, and  is a harmonic vector with components u;(x;,
X2, X3), Yi(x1, x2, x3) (=1, 2, 3), respectively, and ¢ is a harmonic function satisfying the
equation

) di -
r———wo+v1}1o=— ww, = 2u
r 2K K
= N % W B 1.2)
(k=3—4ap r=yxi +x3 +x2)

where u is Poisson’s ratio, and G is the shear modulus.

If we have formula (1.1) for the components of the displacement vector in a Cartesian system of
coordinates, well-known formulae can be used to express those components in a spherical system of
coordinates and then, using the Cauchy relations and Hooke’s law, to find the stresses o, 7,9, 7y, .
However, these formulae prove to be quite complicated. We will therefore obtain formulae of the
same structure as (1.1), as in [1]. To do this, we obtain [7] a formula for the components p,; (j =1,
2, 3) of the stress vector over the cross-section with normal ». Using (1.1), the Cauchy relations and
Hooke’s law, together with (1.2) and the equation divv = divyy+ 2rdy,y/or, this formula can be
written in the form

Yolxy, X4, x
Dy = Hyoer, x5, x3) + (7 — R¥)r 2o X2X3)

arax;
3o W 1 3 Y, Ak
Hi=_2uxjpo +r? — +x;r(l = 2u) — + — xp(— - —), j=1,2,3 (1.
i xjvo ax; ;7 ( ] ar Tl 2%y ax, ), 7 (1.3)

It can be shown [7] that AH; = 0.
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Having the formula for p,;, we find
0, =Py cOsysinG +p,,; singsin® +p,,5 cosd
Trg =Pp) COspcosl +p,, singpcosd — p,;sind
Trp = —Pyy Sing +p,2 COSY
or, after obvious algebra
ro,=yi, 8,9)+(* -~ R*)ryg(, 6,¢)
r1e = V30, 0,9)+ (* — RY)r(r 4, 6,9) )
rTre = V3 0, 9) + (2 — R r[(rsin0) ™' Yo, 6, p)) (1.9)
Y1 =H, cosypsind + H, sinysin8 + H; cos
Y2 =H, cosgcos 8 + H, sing — Hy sind
Y3 =—H, singt Hycosy (1.5)

(the derivative with respect to r is denoted by the prime, the derivative with respect to 6 by the dot,
and the derivative with respect to ¢ by the comma). Then, introducing the function

Vs =H, cosg +H,sin ¢
and the complex combination
V' =L iy
it is easy to see that ¢ satisfies the differential equation
AY; —[¥; =28 )' 1r™* cosec?§ =0 (1.6)
It can also be shown that the function ¢ (j = 1, 2, 3) can be expressed in terms of the solution of
Eq. (1.6) by the formulae
20i= (¥ +§ )sin + Hycos6
295 =(Yf + ¥ )cosf — H,sin8 (1.7)
2193 = §j - Vi(AH; =0)

and after this has been done the harmonic function ¢, can be found.

Thus, we introduce vector functions H and ¢* with components H,, H,, H; and ¢, 3, ¥5,
respectively. Using formula (1.3) for H;, we calculate the derivatives of the components with
respect to x;. This gives

—divH = 2[r(ryo) — 2(1 — 2u)r o — 2(1 + 1) Yo (1.8)

On the other hand, using formula (1.5) for H;, we establish the equation div H = div¢™, and this,
together with (1.8), gives an equation for finding .

2. STATEMENT OF THE PROBLEM AND CONSTRUCTION OF A DISCONTINUOUS
SOLUTION

We will assume that there is a spherical slit of radius R with centre at the origin of coordinates
r=0, 8 =0, ¢ = 0in an unbounded elastic medium with shear modulus G and Poisson’s ratio . Let
the slit occupy part of the sphere: 0<6<w, —w<¢@=<m. The elastic medium is loaded arbitrarily
and the stress distribution when there is no slit is known

0,=—-:1(r,0,9), T9=—-020n0,9), 71,,=—qs:0 0, ¢) (2.1)
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The problem consists of finding the stress distribution in the elastic medium when there is a slit in
it and, in particular, in finding the stress intensity factors at the slit edges.
We construct the required stress field in the form

0,=0;—q1, TH=TH —q2, Tr,=Tsp— 43 (2.2)

where the stresses indicated by an asterisk are constructed by (1.4) and (1.5), and we allow for
discontinuity of the displacement field on crossing the slit. To do so, we must construct
discontinuous solutions of Eq. (1.6) and the harmonic equation AH; = 0 with first-order discon-
tinuities on the slit »r = R with prescribed jumps of the required functions and their normal
derivatives (normal to the line of discontinuities), i.e.

(), [Hi], [vil, i

(2.3)
[F]=F(R—-0,0,0)— F(R+0,6, )

These discontinuous solutions are constructed by applying a Fourier transformation with respect
to the polar angle to the given equations

™

1 .
H3n(r: 6)= 2— f H](ry 6’ ’"p)e ’"”d¢, nzostl t29~-' (2'4)
m

-m
and then a Legendre transformation with respect to 6

n

Hy,r)= { sin8 P (cosT)H s, (7, 0)dO (2.5)

0

and, finally, the Mellin integral transformation of the generalized model {8]. Inverting the resulting
Mellin transforms and then the Legendre transform using the formula

Hjn(rr 0)= kz| | H3nk(")ok,lnlpkln|(coso)
=ln

20k m = (k — m)! [(k +m)! ]~ (2k + 1) (2.6)

we obtain the following formula for the Fourier transforms of the required discontinuous solutions

d
Hu(r, )=R? { fsintK,(r, R, 0, 7)[H,(R, )T — — [sin7K,(r, R, 0, T)[H,(R, 7)}dT
R 2.7)

and a similar expression for 7 (r, 6), in which K} is replaced by K}, 1, where

K, R 8 1= . Z 0k ym Vk(r, R)PI '(cosO)P,'{"'(cosr)
=lm|
" (2.8)
Qk+ D@, RY=r*R™% r <R, Qk+ )W, R)y=R**'r %1 r>R

Here and below the integration with respect to 7 is taken from 7= 0 to 7 = w.

Clearly, in order to find the Fourier transforms of the required stresses o, , 7j%, 77, using (1.4) and
(1.5), written in terms of Fourier transforms, we need to find the transforms of the discontinuities of
the functions ;* and their derivatives. We obtain these discontinuities from the condition for zero
stresses (2.2) on the sides of the slit » = R ¥ 0, that is

O:I,=R:o =4, Tj-o | r=Rz0 =42, T:¢|r=R¢o =4qs
which can be written in transforms as
On(R¥0,6)=q1,(8). Ton(R¥0,6)=q20(0),
Ton(RF0,0) =¢3,(0), 0<O<w, n=0%l1, 2, .,

It follows immediately from (1.4) that [}, (R, 0)] = 0 (j =1, 2, 3) and thus, from (1.5)

(2.9)
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|Ha(R, 0)1=0, [yin(R, 0)]=0 (2.10)

This simplifies (2.7) and the analogous formula for ,(r, 6) considerably

H,(r, 0)=R? {sintK,(r, R, 0, D[H,(R 7)dr (2.11)
Yin(r, 0)=R? [sintK, ., (, R, 6, 1) [Vin (R 7)]d7
3. REDUCTION OF THE PROBLEM IN QUESTION TO AN INTEGRAL EQUATION
From Sec. 2, it is clear that, in order to find H; and ¢, and then y (j = 1, 2, 3) from (1.7), it is

sufficient to find the jumps [H,/ (R, 7)] and [¢3,' (R, 7)]. For this, conditions (2.9) must be satisfied,
and from (1.4) and (2.10) these reduce to the equations

Vin(R -0, 0)=qjn(6), 0<0<cw, j=1,2,3, n=0,2l, 22, . (3.1
It is more convenient to consider positive and negative values of the parameter n separately: n = m,
m>0and n = ~m, m>0, and to use the following notation for the unknown discontinuities

Win R Dlpmm =X +1 (1), Hp@®R Nly= m= X%, )
Win®R Dnz om =Xm-1(1), [Hi@R Dlpm-m =X m=0,1,2,...

Then, using formulae (1.7) and (2.11) and the obvious linear combinations of the resulting
equations, we obtain the equations

Iy 1 =[sintS,, 410, 7) Xon 41 (1)d7=U,, (8) +ig3 ,, (0), m=0,1,2,...

(3.2)

3.3
I = sintS8p 1 (0, 7)X0m-1(NdT=U_,,,(8) *ig3 _p(6),, m=0,1,2,... G-3)
1%, = [sin7S,, (8, 1) X% (Nd7r =V, (8), m=0,1,2, ...
I, =[sin7S,, (8, )Xy (Ndr=V_,,(8), m=0,1,2,...
Here

Un(8) =sinbq, ,(8) +cosbq, ,(6)

Va(6) = 0584, n(6) — sin84;, (6) (3-4)
> Ie,m m m

Sn6, = Z P (cos )P (cost), m=0,1,2, ... 3.5)

k=m 2k+1

From the second formula of (3.4), it is clear that the solutions of the third and fourth equations of
(3.3) are related by the formula x*, (7) = x5 (7). Inverting the Fourier transforms (2.11), and using
(3.2) and (3.8), we find

HR~0,0,0)=R{IQ +2Re T I ¢e'™m¥}
m=1

w;(R—0,0,¢)=R{ Z I+ X 1;"_le~im¢} (3.6)
m=Q m=1

In order to calculate the stress intensity factor, we need to know the stress distribution on the
continuation of the spherical slit, that is, o, (R, 8, ¢), 7,9 (R, 0, ¢), 7., (R, 8, ¢) for 6> w. From (1.4),
for example, ,(R, 6, ¢) = R ¢, *(R—0, 0, ¢), and from (1.7) and (3.6) we have

m=1

o4R, 0,¢)=cos018+Re{2cose T eMmerd +

oo oo

T MOt T ML+ e ], 0> 3.7)

+sind [
m=0 m=1 m=1

U
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Once the integral equations (3.3) have been solved, this formula can be used to calculate the
normal stress intensity factor, and those equations can be solved merely by finding the solution of
the equation

Jsin78, (0, N xm(1)d7=f,,(8), 0<O0<w (3.8)

4. SOLUTION OF THE INTEGRAL EQUATION OF THE PROBLEM IN THE CLASS OF
INTEGRABLE FUNCTIONS

We will attempt to sum the series (3.5), defining the kernel of the integral equation (3.8), by
establishing a relation between the associated Legendre functions P’ (x) and Jacobi polynomials
PB(x). Using formula 8.704 of [9], we have

Pl (x)= : ( : +x)‘/”" F(—k, k+1; 1-m; I=x ) 4.1)
(1 —m) 1—x 2
Comparing this with 8.902(1) of [9] and putting x = cos 8, we obtain the relation
Px ™™ (cos8) = [[(k + 1 —m)/k!] tg™ %6 PF (cosf) (4.2)

Then, puttinga = —m, B=m, t =1, x = cos 8, y = cost in formula 5.14.4(1) of [10], using (3.5)
and (4.2), and then the well-known series representation of the Appel function F, in order to
eliminate the multiplier I'(1 —m), we obtain

(%) py SN 2™ %0 5in MY 1
mi2tg" %o tg" Vit
XFa(%+m, 1+m; 1 +m, 1+m; sin?%0sin% 1, cos?’%Bcos? 2 7) 4.3)

In the reduction formula on p. 231 of [11] we take a=Y2+m, B="2+m and x = —tg? 144,
y = —ctg’¥srwhen §<7and x = —tg?lsr, y = ~ctg?120 when 7< 0. The last factor in (4.2) can then
be represented in the form

F(%+m, %; 1 +m; g*%0ctg’%r)

(cos% 0 sint% 1)2m*1 ’

Sm(8,7)=

0<r

When 6> 7, the variables 6 and 7 in this expression must be interchanged.
Consider the discontinuous Weber—Sonin integral

W,, (tg%0, tg¥or)= [ J,, (stg¥h0)J,,(stg %r)ds =
0

%) m tg”" 150 tgh o
=-(—)—m—§nl—-——F(m+%,%;m+l; g
mitgm iy tgh7

where we have used formula 6.574(1) of [9).
To obtain a representation of the integral when #>7, we must use formula 6.574(3) of [9].
Comparing (4.4) with the previous formula, we obtain

Sm (0, 7)=Ysech8 sechrW,, (tg%0,tg¥%7), m=0,1,2,... (4.5)

Taking this into account, integral equation (3.8), by means of the substitutions

), 8<r (4.4)

tghb=r, tghr=p, tghw=a
2014 02)7 xon (221618 ) = X, (p) (4.6)
(1 +r?)~%f, Qarctgr)=F,,(r)

can be converted into the integral equation
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1
J Wi (x, »)y Xm(ay)dy = ~Fm@), 0<x<l, m=0,12,... (4.7)
L]

The last equation has an exact solution either in the form of quadratures or as a series in Jacobi
polynomials [8]. For our present purpose, it is better to use a series solution, and this can be
obtained by the method of orthogonal polynomials [8] in the form

- y7 -
X (@)= IEO kaﬁ PR (1 - 2yY) (4.8)

_AR)NMm % +2k) 1 F@)x™t PP (1 - 2xydx

al%(k + %) ;f V1I=x?

Substituting the resulting solutions into (3.9), we find the intensity factor by passing to the limit

Xon k

Ni@)= lim 6(R 0,9VT - (4.9)
-

However, after calculations similar to those carried out previously in [S], we come to the
conclusion that N, (¢) = 0 for any loading of the elastic medium. This shows that the solution (4.8)
of (3.10) or (4.7) in the class of integrable functions does not enable the true stress distribution (3.7)
to be found for @ = w. Thus, as in [5], we need to widen the class of required solutions to include
those with non-integrable singularities when 6 = w.

5. CONSTRUCTION OF THE SOLUTION OF THE NON-INTEGRABLE EQUATION IN THE
CLASS OF NON-INTEGRABLE FUNCTIONS AND CALCULATION OF THE STRESS
INTENSITY FACTOR

We shall construct a solution of the integral equation (4.7) in the form
ym
(] _ yz)’/z
Using the same argument as in [5], we find the coefficients C,,, which, in this case, will have the
form

Xm (@)= X5 @)+ Cpy (5.1)

(5.2)

The solution of (4.7), given by substituting (5.1) and (4.9) into (3.7) and then using the substitution
(4.6), will give a correct stress distribution (3.7) for 8> w, allowing for the fact that only the second
term in (5.1) will give an infinite root of (3.7). To make the passage to the limit (4.9), we must use
the relation

sint8,(0, 7) tg'% rdr _ g2 1w tg~ e

2008 %TR(w,7)  cosKOR(, w) (5.3)
0>w, 1=0,1,2,..., Rw, D= Vigihw—tg ¥t

which follows from (4.3) of [5], taking into account the replacement of variables (4.6). As a result of
passing to the limit, we have

. o I"”‘P-x&
Ni(@)= —tgr%hwlcoswx3o + Re [2cosw T ——0 +
m=1 2m+1
©  Gil=1)e = i(+1)e

+ si Y e oyt X e 5.4
smw(}_ﬂ ST X0 2o X101 (54



Non-axisymmetric problem of stress concentration in an unbounded elastic medium 671

By (5.2), (4.6), (3.3) and (3.4) we have

2m+1 CV,,(0)Cm(0)de tg40
X0 = mOC OB o= B2 oo a.
ntghhw o coshOR(w, 0) tghw
2041 @ U (0) tigs ;—4(0
Xho = r = 100) *ids,1-1(6) cHl9)ds, 1=1,2,3,... (5.5)
mtghw o cos¥ 0 R(w, 8)
2141« UL 0) +iqgy _ 0
Cio = a+1)(0) tiqs _(141)(0) C*l@)ds, 1=0,1,2, ...

Tighw o cos 0 R(w, 6)

We will transform the resulting formula (5.4) into a more convenient form. Substituting (5.5) into
(5.4) and writing out the real part of the complex expression in (5.4) in the form of a sum of
conjugates, we obtain

tg"%w Y Q(, p)dd

M= - 5 coskfR(w, 0)’
Q0,v)=coswC(6) Z Moy, (0)C" (0) +
+hsinw {Z20) [Us(®)+ = e™9 U, (0)C™\(0) + (5.6)

o0

+ T MU, 0)C'™N0)- Uyb) }

m= oo

Using the theorem of a convolution for a finite Fourier transform (see [8], p. 316, for instance)
and formula 1.447(3) [9], taking account of (3.4) we have

g¥%w Y T CO)[1—C*@)]lcos wV (8, )+ sinwl(8, $)cos(p — ¥)]dody
M@=-—5—1
27 a cos k0 R(w, 0)CH, ¢ — V)

[

(5.7)

where
U(6, y)=sind q,(0, V) + cosbq, (8, §)
V(8, ¥)=cosbq. (8, y) — sinbq,(8, ¥) (5.8)
C6, ®)=1—2C(8)cosd +C2(0)

We also obtain formulae for the shear stress intensity factors

NZ(‘p): lim TrO(Rx oaw)v 0—w
G- w40 (5 9)
Ns(p) = 0_{i13+0 Tro(R 0, 0)V/0 — w

According to (1.4), the stresses on the continuation of the crack that are included here will be
expressed as

Tl'o (Rr 6’ ‘p) =R-l d/; (R - 0, 0, w)
(R 0,0)=RY3(R-0,0,9), 0> w (5.10)

The use of formulae (1.7) and (3.6) and calculations similar to those carried out to obtain (5.7)
lead to the result
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g% hw @ } CO)[1 - C*(8)] [coswU(8, Y)cos(p — &) — sinw V (0, Y)HOdY

Ny(p) = — 2 f
2n 0 —m cosBOR(w, 8) C(6, ¢ — ¥)
Y w n
Nyg)=— B2© [ [ GO - CO)lcosty — 1426, ¥)dbdy (5.11)

2‘"2 0 —m COS%OR(OJ, G)C(G, Y — w)

6. SOME SPECIAL CASES OF THE LOADING OF AN ELASTIC MEDIUM

We will start with the case of all-round extension of the elastic medium at infinity by a uniform load of
intensity p. In this case
q,0,9)=-p, q,06,9)=0, q,06,9=0

and therefore, according to (5.8)

U, ¢p) = —psing, V(6,p) = —pcosd (6.1)

Thus, in this case N3(¢) =0, and for N;(¢) = N, N2(¢) = N, according to (5.7) and (5.11) and from
formulae 3.613 of [9], we have the expressions

1 2sinwJ(w)

Ny = — [coswd (w) + —— ] (6.2)
ntg" Yaw tg¥aw
1 2coswd (w) .
N, = v [ —sinwJ (w)]
mtg’ Vaw tglrw
where
tg? 120 sin%20 do . tg¥20 cos 0 dv
Jwy=f———, J(w)= [ ———— (6.3)

R(w, 8) cos¥20 R (w, 8)
and, from the relation cos @ = cos?¥26 —sin* 1426, the last integral reduces to
« sin'20do
Jw)= f——— - J(w)
R(w, )
The integrals here can be reduced to standard tabulated form by the substitution 6 = 2arctgx. We then have
Hw) = w - sinw, J(w)=2sinw-w 6.4)
and, therefore, instead of (6.2) we will have the expressions

plwceosw + 2w — sinw)]

N, =
mtglrw

2 pcostrw

N, = (wcosthrew — 2sin% w)

- 3
T otg h Yaw

The next case that we consider is that of axial extension at infinity in the direction v by a uniform load of
intensity p. We introduce the following notation for the direction cosines

costy, x) = I, COsy, ¥) =mp, cos(v, 2)=np, (6.5)

Using well-known formulae to transform the components of the stress tensor by rotating the coordinate axes, in
this case, we have

q,(0, 9) = —plsin®6(l} cosp + mpsin® ¢ + Ipmpsin2y) + 1y $in2 6 (Ipcosy + mpsiny))
2q,(8, 9) = —plsin20(pcos’y + mysin’ p — n’p +1l,mpsin2y) + 2pn,cos20 cosy +
+ 2mpny (cos? 6 cose — sin?gsin )]

2¢,(0, ) = —p[sin2p(m} sin6 — 13 c0s8) + I mpsin6 cos2p + np cosé (mp — I, sing)} (6.6)
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and, according to (5.8)

U, ¢) = ~p{*(p + m*p) sin6 n;‘, ¢ind cos?0 + %(lj, — mp)siné cos2y + Ipmpsingsin2yp +
+ np(lpooso +mp cos®@) + npmp, sin?é cosd sing],
V{8, ) = ~plng sin6 cose + np sin@(lp, — my, cos® 6) cosy + npmy, sing cos* o sind} (6.7

We now substitute these expressions into (5.7). Subsequent use of integrals 3.613 [9] yields a single

quadrature for the intensity factor N, (¢), where the integrals have the same structure as in (6.3), and the same

su

bstitution gives functions tabulated in [9]. Thus, we can obtain
2mp~ 1% wN, () = 2np T, (w)cosw + sinwctghaw (20} + mj — n2)J(w) +
+npJ, (W] +npmp ctg a2 (w) — T (w)] cosw sing + npmpsinw |J, (w) +
+ctg? Yow Jy (w)] Gsing - cosp) + { 2m, cosw ctgtew [20p — mp) J(w) +
+mpJy (W)] +nplp + mp)sinwlJ (W) + ctg* %l (W)]] cosp + [Hw) + ctg? hwl, (w)] X
X sinw ctghw((I} — m}) cos2¢ + 21, mp sin2y) (6.8)
The integrals J(w) and J *(w) are given by formulae (6.4), and for the others we have
J, () = fsin? rQ{r) dr = 81g* hew [c0s0 (cos* Yaws + Vs sin? Yoco + cos? Yoo + Vs sind Yacw) +
+ (sin® B w — cosw) (s cos? Yaw + s sin® Yw) — Ys sin® Kw]
08P = tg¥r cosrsecthrR 1w, 1), k=1,2,3,4
17 @) = [0 dr = 2t8%0 (tg? Heew cosw + tg2 e — 2 — Ytghw) ~ w(te? Yow — S)
Ty (w) =% [ sinr tgr 08P (1) dr = 16 Yaew sin® Yoo (cos* Yo + Y3 cOs™Vhcw + Vs sin® Yoo —
~ cos*Yrw — Vs sin*Kw + Vs)
J(w) = ’/&ftgng)(f)dr =2[tgYrw(sin® Yow — 2c08%Yaw + wighhw + 1+ cos  How — %w]
Jy(w) =% fsine sin2r QP (1) dr = 8tg* Yoo cosw(cos® Yow + ¥ sin? Y00 Yo + Vs sin® o) +
+1g* Kw[(sin® w — 2003w) (Vs cos? Yaw + s sin? % w) — Y5 (2cosw — D]} +

+ s tgf - Y318 Bwsin TP K w + tgYwsin™ Yw — Bw

Thus, for the given loading, the normal stress intensity factor can be expressed in terms of elementary

functions. This is also true of the shear stress intensity factor (5.9). For, substituting (6.7) into (5.11), the
formulae obtained for them are similar to (6.8).
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